Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy.

نویسندگان

  • Xiaoyu Zhang
  • Matthew A Young
  • Olga Lyandres
  • Richard P Van Duyne
چکیده

A rapid detection protocol suitable for use by first-responders to detect anthrax spores using a low-cost, battery-powered, portable Raman spectrometer has been developed. Bacillus subtilis spores, harmless simulants for Bacillus anthracis, were studied using surface-enhanced Raman spectroscopy (SERS) on silver film over nanosphere (AgFON) substrates. Calcium dipicolinate (CaDPA), a biomarker for bacillus spores, was efficiently extracted by sonication in nitric acid and rapidly detected by SERS. AgFON surfaces optimized for 750 nm laser excitation have been fabricated and characterized by UV-vis diffuse reflectance spectroscopy and SERS. The SERS signal from extracted CaDPA was measured over the spore concentration range of 10(-14)-10(-12) M to determine the saturation binding capacity of the AgFON surface and to calculate the adsorption constant (Kspore=1.7 x 10(13) M(-1)). At present, an 11 min procedure is capable of achieving a limit of detection (LOD) of approximately 2.6 x 10(3) spores, below the anthrax infectious dose of 10(4) spores. The data presented herein also demonstrate that the shelf life of prefabricated AgFON substrates can be as long as 40 days prior to use. Finally, these sensing capabilities have been successfully transitioned from a laboratory spectrometer to a field-portable instrument. Using this technology, 10(4) bacillus spores were detected with a 5 s data acquisition period on a 1 month old AgFON substrate. The speed and sensitivity of this SERS sensor indicate that this technology can be used as a viable option for the field analysis of potentially harmful environmental samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS)

This paper summarizes our recent progress toward developing anthrax and glucose sensors based on surface-enhanced Raman spectroscopy (SERS). Ag film over nanosphere (AgFON) substrates was used as the SERS sensor platform in both cases. The AgFON substrates have been optimized for near-infrared (NIR) laser excitations by tuning the extinction maximum of their localized surface plasmon resonance ...

متن کامل

An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection

Metal film over nanosphere (MFON) electrodes are excellent substrates for surface-enhanced Raman scattering (SERS) spectroscopy. These surfaces are produced by vapor deposition of a metal film over nanospheres that are assembled in a hexagonally close packed arrangement. The efficiency and reproducibility of AgFON electrode as SERS substrates are confirmed by the repeatability of the electroche...

متن کامل

Unification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles

stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 12  شماره 

صفحات  -

تاریخ انتشار 2005